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1 Introduction

The importance of “On the Private Provision of Public Goods” by Ted Bergstrom, Larry Blume, and Hal

Varian (1986)—hereinafter referred to as BBV—to public economics cannot be overstated. In particular,

their results on uniqueness, crowding-out and income redistribution “are now staples of public economics and

are taught in most graduate courses around the globe.”1 While the full-information case is well understood,

less is known about the voluntary provision of public goods in the BBV setup of continuous contributions and

quantity of public good if one posits private information, especially without appealing to mechanism design.

As pointed out for instance in Martimort and Moreira (2010), much of the private information literature

assumes the existence of an uninformed mediator with full commitment power and then applies the tools of

mechanism design. While this assumption is certainly appropriate in some circumstances, Martimort and

Moreira (2010) argue it is less so in others.2

Some interesting results appear in this literature. For instance, Gradstein et al. (1994) provide examples

that show how neutrality with respect to income redistribution can easily fail when private information

about willingness to pay is introduced into the BBV model. However, while convincingly establishing that

private information has important consequences, the literature has not been able to marry generality and

tractability, as BBV and Cornes and Hartley (2007a) do for the full information case. On the one hand,

for instance, the tractable (and insightful) private-information, public-good models of Vesterlund (2003) and

Andreoni (2006) consider a two- or three-point distribution of uncertainty. Clearly, this limits the kind

of information-related questions that these models can answer. On the other hand, Bag and Roy (2011)

allow for quite general forms of uncertainty but make no effort in the direction of establishing existence,

uniqueness, and comparative statics properties of equilibrium in their analysis of the simultaneous game.3

If one abandons the continuous production function of BBV and focuses instead on a binary public

good (a setup such that the public good is either built or not; quantity is not otherwise variable), while

retaining continuous contributions, then progress is possible. Earlier works on this subject were limited in

focusing primarily on equilibrium existence with two agents, since multiple equilibria typically exist and

complicated strategies make deriving comparative statics results forbidding.4 The recent contribution of

Barbieri and Malueg (2010) adds threshold uncertainty to the discrete model with the result that equilibrium

is unique, readily characterized, and easily amenable to comparative statics analysis and applications (see,

e.g., Krasteva and Yildirim, 2013, and Barbieri and Malueg, 2014), even for asymmetric environments with

1See Andreoni and Kanbur (2007, p. 1634). See also the results in Warr (1983) and Cornes and Sandler (1985).
2Martimort and Moreira (2010) include examples such as health, environment, global warming, counter-terrorism, multilat-

eral foreign aid, and lobbying.
3Their focus is on showing the dynamic game outperforms the static one. To do so, they derive an upper bound on

simultaneous-game contributions, rather than relying on a detailed characterization of equilibrium.
4See e.g. Alboth et al. (2001), Menezes et al. (2001), Laussel and Palfrey (2003), and Barbieri and Malueg (2008a, 2008b).
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many agents. However, Barbieri and Malueg (2010) operate in a binary public-good, subscription-game

framework.5 While interesting, the applicability of this framework to real world situations is not universal.

As Nitzan and Romano (1990) point out, binary public goods models with threshold uncertainty are

closely related to the setup of BBV: the probability of provision can be reinterpreted as a continuous pro-

duction function. With this interpretation, a natural first question is then, Can the threshold uncertainty

approach of Barbieri and Malueg (2010) provide insights into a BBV framework with private information?

Indeed, the answer is Yes.

The key simplifying feature in Barbieri and Malueg (2010) is a form of linearity of the first-order op-

timization conditions. Rather than having to forecast the entire distribution of other agents’ strategies,

linearity allows a potential contributor to focus only on others’ expected contributions, thus considerably

reducing the dimensionality of the problem. Our first proposition identifies, for the standard continuous

public-good contribution game, which utility functions yield such linear first-order conditions. Our second

result then further restricts these utility functions so that they display the properties BBV require of their

utility functions: convexity of preferences and strict normality in both the private and the public goods.

Maintaining linear first-order conditions and the BBV properties, we show existence and uniqueness of

equilibrium, a substantial generalization of the homologous result of Barbieri and Malueg (2010). We then

analyze the comparative statics effects of changing a player’s (ex ante) distribution of income. Reducing

the “riskiness” of a player’s distribution of income (in the sense of second-order stochastic dominance) can

decrease, increase, or leave constant that player’s expected contribution to the public good, depending on

whether his contribution strategy is convex, linear, or concave over the “types” that experience the change

in income. The overall level of the public good then moves in the same direction as the change in that

individual’s contribution because even though other players “adjust” in the opposite direction, they do so

by less than the player whose income distribution changed. We also explore the consequences of (partial)

government provision of the public good that is financed by lump-sum taxes. If taxes are collected only

from players who never contribute or only sometimes contribute, then the level of the public good is sure to

increase, but by less than the level of government contribution. However, if the tax is collected by players

who contribute for all income levels, then the overall supply of the public good remains unchanged—the

government’s crowding out of private contributions is complete.

We view our results as complementary to BBV’s. In a full-information setting with known income levels,

they explored the effects of income redistribution involving actual transfers of income across players. In

contrast, we consider changes in the income distribution for a particular individual. The BBV redistributions

5In their setup, the binary public good is built and paid for if and only if the sum of agents’ contributions surpasses a
threshold. Otherwise, contributions are refunded. Refunds of insufficient contribution are what distinguish what Admati and
Perry (1991) label the subscription game from the contribution game, which has no refunds.
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correspond to an ex post greater equalization across players while our “redistributions” correspond to an

ex ante decrease in riskiness of income for a given player.

The import of these two complementary approaches is on full display when analyzing economies in which

income is stochastic and taxation is not lump-sum. For instance, a standard way to model a government

intervention that fosters income equality is via the combination of proportional taxation and lump-sum

redistribution. In our model, such a scheme would accomplish two changes. First, a lump-sum redistribution

of income across agents occurs, from the rich on average to those that are in expectation poor. This across-

agent change is well-handled by simply extending the results of BBV at the realized income level. Second,

a “riskiness-reducing” redistribution among the possible income realizations of the same agent is effected.

Therefore, even if the set of contributors does not ultimately change, contributions to the public good do,

in a direction that can be forecasted from the curvature of the contribution strategies.

Similarly and surprisingly, we show in an example that when the government raises taxes through a

proportional income tax, then crowding out may be greater than one-for-one: the government’s taxation and

contribution yields an overall decrease in the level of the public good. This result obtains because one can

decompose the government intervention into two components: first, a public provision of the public good

financed through a lump-sum tax set equal to the tax rate times expected income; and second, a reduction in

the riskiness of the income distribution because taxes are not actually lump-sum, but proportional. Therefore,

even if the first component ends up having no real effect on total provision, the second component matters;

by our results on “riskiness-reducing” redistribution, if contribution strategies are convex, then total public

good provision decreases.

We conclude our analysis by considering an example of multi-dimensional private information: the case in

which, in addition to income, agents’ unit costs of contributions are also private information. The possibility

of different unit costs of contributions is well analyzed, with full information, by Cornes and Hartley (2007a).

We complement their analysis of changes in levels of unit costs by determining the effects of changes in the

distribution of unit costs.

The papers using frameworks most similar to ours appear in the baseline simultaneous models used in

the theoretical literature on sequential giving or leadership in teams. The most important difference with

our work is in focus. All these papers analyze the effects of dynamics in contribution, as in Varian (1994).

None deals with issues of inequality and redistribution or taxation and crowding-out. Moreover, there exist

important technical differences with our approach as well. We consider private information about a private-

value characteristic—income—while the majority of these papers deal with a common-value characteristic,

e.g., the quality of the charity or the total factor productivity of the production function of the public good.

This is the case for Hermalin (1998), Vesterlund (2003), Kobayashi and Suehiro (2005), Andreoni (2006),
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Komai, Stegeman, and Hermalin (2007), and Komai and Stegeman (2010). The fact that the information

is about a common-value characteristic is important because it creates a signaling motivation for leadership

contributions and information acquisition. This leads to the vast majority of contributors making their

contribution decisions without facing private information: all contributors but the leader observe the same

action by the leader and they all draw from it the same inference about the quality of the public good.

Our framework is different since there is no signaling motivation for giving and every agent has private

information. This is also true of Bag and Roy (2008) and (2011), who consider a private-value private-

information model, as we do. Their focus is however on the dynamics of contributions, rather than on

performing an in-depth analysis of the simultaneous game. Therefore, they establish an upper bound for

contributions in the simultaneous game, which is sufficient to show conditions under which dynamic provision

outperforms static provision. But they sidestep issues of equilibrium uniqueness, which prove tricky in their

framework. Indeed, even for the two-player, two-type case, they say that “. . . in general it is not possible to

guarantee uniqueness of equilibrium contributions or even expected total contribution in the one-shot game”

(Bag and Roy, 2008, p. 66).

There exists a small but growing empirical literature on the effects on income inequality on the private

provision of public goods. Payne and Smith (forthcoming) provides both a recent contribution and a review

of existing results, which point to the possibility that increased inequality may increase, decrease, or have

no statistically discernible effect on voluntary contributions. Our results may help rationalize this variety.

Most importantly, our results provide a theoretical baseline for when the agents’ motivation for giving is the

“enlightened self-interest” of BBV; empirical departures from this baseline can be taken as evidence of the

importance of additional motivations for giving—signaling or warm-glow, for instance.

The rest of the paper is organized as follows. The next section explores the relationship between the

binary public-good model with threshold uncertainty and the standard continuous case for full-information

environments. This allows us to gather intuition on how to proceed when information asymmetries are

present. Section 3 describes our private information model and presents our matching results. Section 4

analyzes equilibrium and the curvature of equilibrium contribution functions. Through several examples, in

Section 5 we illustrate our results and their implications for crowding out and redistribution; we also analyze

the case of different unit costs of contributions. Section 6 concludes. The Appendix contains most proofs

and a numerical simulation for a utility function that does not satisfy our linearity condition; the results we

obtain there agree with our analytical findings.
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2 The full-information environment

At the moment in which a joint endeavor is first undertaken, uncertainty about what the actual cost will turn

out to be at completion is almost a fact of life.6 It is therefore not surprising that such uncertainty occupies

an important place in economic theory. Of particular relevance is the seminal contribution of Nitzan and

Romano (1990) on binary public goods. The standard modeling of binary public goods has the good provided

if and only if the sum of agents’ contributions exceeds a set threshold, as in Palfrey and Rosenthal (1984,

1988), for instance. Referring to a firm engaged in a court case that will set precedent for others, Nitzan

and Romano (1990) noted that “it is probably more realistic to assume that. . . the probability of winning

was an increasing function of the resources devoted. . . rather than Palfrey and Rosenthal’s assumption that

winning required some known fixed expenditure.”7 Thus they were motivated to introduce uncertainty in

the cost threshold.

Beyond arguing that cost uncertainty is realistic, Nitzan and Romano (1990) demonstrate that threshold

uncertainty introduces important differences in equilibrium prediction as compared with the fixed-threshold

case: with sufficient uncertainty, equilibrium is unique and inefficient. As Nitzan and Romano (1990) note,

these equilibrium predictions are familiar from the standard continuous case of BBV.

The similarity is not coincidental: one can readily map the setup of Nitzan and Romano (1990) into

the one of BBV through a simple reinterpretation of the individual utility function of agent i. Nitzan and

Romano (1990) describe the utility function in their equation (5) on page 362, and we report it here:

(∆i − ci)F
(∑

cj

)
.

If one interprets F , the cumulative distribution of the cost threshold, as the quantity of public good produced,

∆i as income, and ci as agent i’s contribution to the public good, then one gets a special case of the setup

of BBV, in which the utility function is (Private good) × (Public good).

In the rest of this paper we explore what additional complications to the above described procedure are

introduced by private information and what utility functions, beyond (Private good) × (Public good), allow

this procedure to go through.

6E.g., Krasteva and Yildirim, (2013, p. 16): “For instance, the exact cost of a construction project may be the result of
a procurement auction; the price of a high-tech equipment needed for a radio program may depend on fluctuating supply
conditions; and the minimum number of ticket sales needed for a concert may be uncertain due to the rival venues.”

7See Nitzan and Romano (1990, p. 358).
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3 The model

We generally follow the notation of BBV. We study the problem of n players who simultaneously contribute

to the funding of a public good. Player i has preferences represented by the utility function ui(xi, G̃), where

xi ≥ 0 is the realized quantity of a private good and G̃ is the total realized quantity of a pure public good,

i = 1, . . . , n.8 Desirability of the goods and player i’s budget constraint imply xi + g̃i = wi, where g̃i ≥ 0 is

player i’s contribution to the public good and wi is i’s exogenous income. The production function for the

public good is simply G̃ = g̃1 + · · ·+ g̃n.

Departing from BBV, we model this provision game as one of private information, where player i’s

income is independently drawn from the cumulative distribution Fi. We let wi and w̄i denote the infimum

and supremum of the support of Fi. A player knows his own realized income but no one else’s. However,

distributions are commonly known.

We begin our analysis by looking for a Bayes-Nash equilibrium {g1(·), . . . , gn(·)} to the simultaneous

voluntary contribution game, where gi(wi) is player i’s contribution when his income is wi. Provisionally, we

derive best responses through the first-order conditions (FOC) for an interior gi(wi) (i.e., 0 < gi(wi) < wi).

The condition reads

E

 ∂ui
∂xi

wi − gi(wi), gi(wi) +
∑
j 6=i

gj(wj)

− ∂ui

∂G̃

wi − gi(wi), gi(wi) +
∑
j 6=i

gj(wj)

∣∣∣∣∣∣wi
 = 0, (1)

where the expectation is taken with respect to {wj}j 6=i given wi. Through Proposition 2 we will ensure that

ui’s curvature properties make equation (1) necessary and sufficient to identify best responses.

A significant difficulty arises in dealing with condition (1). In general, agents must forecast the entire

distribution of every other agent’s contribution and then calculate the convolution of these distributions. The

setup of Barbieri and Malueg (2010) is especially convenient because agents need only forecast the average

contribution of other agents. As in that paper, if it is possible to transport the expectation operator inside

the marginal utilities in (1), then one can greatly simplify the problem. Thus, if

∂ui
∂xi

wi − gi(wi), gi(wi) +
∑
j 6=i

gj(wj)

− ∂ui

∂G̃

wi − gi(wi), gi(wi) +
∑
j 6=i

gj(wj)

 (2)

is “linear in others’ contributions”—that is, if it can be reformulated as

hi (wi − gi(wi)) + ki (wi − gi(wi))×

gi(wi) +
∑
j 6=i

gj(wj)

 , (3)

8Because ui is the subject of our analysis, we leave a discussion of its curvature properties to Proposition 2.
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where hi and ki are continuous real-valued univariate functions—then one obtains the desired simplification.

Essentially, the equivalence of conditions (2) and (3) obtains for the solution ui(·, ·) of the partial differ-

ential equation

∂ui
∂xi

(
xi, G̃

)
− ∂ui

∂G̃

(
xi, G̃

)
= hi(xi) + ki(xi)× G̃. (4)

The following proposition (proven in the Appendix) derives the set of utility functions that display the

required linearity.

Proposition 1 (Equivalence). The solution to (4) is

ui(xi, G̃) =

∫ xi

0

[
hi(s) + ki(s)(xi + G̃− s)

]
ds+ vi(xi + G̃), (5)

where vi is an arbitrary real-valued univariate function.

The import of Proposition 1 is that the relevant first-order condition for utility function ui(x,G) will be

linear in G if and only if it has the form in (5) for some univariate functions hi, ki, and vi. It is convenient

to restate the utility function in (5) as

ui(xi, G̃) =

∫ xi

0

[
hi(s) + ki(s)(xi − s)

]
ds+ G̃

∫ xi

0

ki(s) ds+ vi(xi + G̃) (by (5))

=

∫ xi

0

[
hi(s) +Ki(s)

]
ds︸ ︷︷ ︸

≡Hi(xi)

+G̃

∫ xi

0

ki(s) ds︸ ︷︷ ︸
≡Ki(xi)

+vi(xi + G̃), (6)

where the second equality uses integration by parts. Given any functions Hi and Ki, suitable functions hi

and ki can be found to generate the associated utility function. Thus, rather than working with hi and ki, one

may specify Hi and Ki independently. Judicious choices of the functions Hi, Ki, and vi yield familiar utility

functions, including ui(xi, G̃) = xαG̃, ui(xi, G̃) = α1xi − α2x
2
i + β1G̃ − β2G̃

2 + γxiG̃, ui(xi, G̃) = xαi + G̃,

and ui(xi, G̃) = αxi + βG̃, where α > 0 and β > 0. Linear combinations of these utility functions are also

admissible solutions.9

With the restatement of utility in (6), the FOC (1) becomes

0 =
dE
[
ui
(
wi − gi(wi), gi(wi) +

∑
j 6=i gj(wj)

) ∣∣∣ wi ]
dgi(wi)

,

9To obtain ui(xi, G̃) = α1xi − α2x2i + β1G̃− β2G̃2 + γxiG̃, we take Hi(x) = α1x+ (β2 − α2)x2, Ki(x) = β1 + (γ + 2β2)x,

and vi(x+ G̃) = −β2(x+ G̃)2. Because our framework accommodates quadratic utility, the functional form in (5) encompasses
a second-order Taylor expansion of any utility function. Thus, our model, in the words of Angeletos and Pavan (2007, p. 1109),
“. . . might also be viewed as a second-order approximation of a broader class of concave economies.”
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or

0 = −H ′i(wi − gi(wi))−K ′i(wi − gi(wi))× (G−i + gi(wi)) +Ki(wi − gi(wi)), (7)

where we define

Gj = E[ gj(wj) ] ∀j and G−i =
∑
j 6=i

Gj ∀i;

that is, Gj is the expected contribution of player j. Note that in (7) the function vi does not appear because,

using the budget constraint, the argument xi + G̃ =
∑
j 6=i g̃j + wi is independent of gi(wi).

We now proceed with the functional form in (6) and we identify properties of Hi and Ki in light of two

objectives. First, we want our reliance on the FOC to be justified. Second, we want ui in (6) to satisfy the

mild assumption that BBV impose on preferences. For a clean statement of our sufficient conditions, in the

next proposition we set the arbitrary function vi to a constant v̄; without further loss of generality we take

v̄ = 0.

Proposition 2 (Properties). Suppose the ui have the form in (6) with vi ≡ 0. If the following conditions

are met:

1. Ki > 0 for all xi > 0;

2. H ′i ≥ 0 and K ′i > 0 for all xi > 0; and

3. H ′′i ≤ 0 and K ′′i ≤ 0;

then the following properties hold:

i. Both goods are strictly desirable;

ii. The FOC characterizes interior best responses;

iii. When xi > 0 and gi > 0 they are strictly normal; and

iv. Preferences are strictly convex.

The sufficient conditions in Proposition 2 imply that the marginal utility of xi is decreasing in xi, but it

is increasing in G̃.

While Proposition 2 yields a match with BBV, the assumptions are stronger than necessary. What

matters for the rest of the analysis are the conclusions of Proposition 2, and these do not require setting vi

to zero.10

10One may easily verify that the quadratic utility in footnote 9, which requires vi 6= 0, satisfies the conclusions of Proposition 2
for a carefully restricted domain. Similarly, the Cobb-Douglas xαG̃, which has vi = 0 but does not satisfy condition 3 if α > 1,
still exhibits properties i–iv.
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4 Equilibrium and comparative statics

We now proceed to characterize equilibrium with the utility function given by

ui(xi, G̃) = Hi(xi) +Ki(xi)G̃+ vi(xi + G̃), (8)

where Hi and Ki satisfy the following three assumptions:

A1 Properties i–iv in Proposition 2 hold;

A2 lim
x→0

∂ui
∂xi

(x,G̃)
∂ui
∂G̃

(x,G̃)
> 1, ∀G̃ and ∀i; and

A3 For some i and some w̃ < w̄i, it is the case that
∂ui
∂xi

(w̃,0)
∂ui
∂G̃

(w̃,0)
< 1.

Assumption A2 states that the marginal rate of substitution (MRS) is strictly larger than 1 in a neighborhood

of x = 0, so that no agent finds it optimal to contribute all of her income to the public good. Assumption A3

similarly states that the MRS, when evaluated (wi, 0), is strictly less than 1 with strictly positive probability

for at least one agent, so the no-contribution strategy profile is never an equilibrium. For the rest of this

paper, we maintain assumptions A1–A3.

First, we establish existence and uniqueness of equilibrium. Then we derive the effects of changing a

player’s distribution of income. In particular, we show that decreasing the riskiness of a player’s income

distribution may increase or decrease total expected contributions, depending on the shape of the player’s

contribution strategy.

We begin by characterizing best responses. Using (7), the FOC that characterizes interior best responses

can thus be rewritten as

Ki(wi − gi(wi))−H ′i(wi − gi(wi))
K ′i(wi − gi(wi))︸ ︷︷ ︸
≡Qi(wi−gi(wi))

−gi(wi) = G−i. (9)

Implicitly differentiating (9) with respect to wi, we obtain

g′i = Q′i(1− g′i), (10)

which, by Assumption A1, implies Q′i > 0 wherever gi is positive. Therefore, the left-hand side of (9) is

strictly decreasing in gi(wi) under under Assumption A1. Thus, equation (9) defines gi(wi) as a function of

G−i in two steps. First, if (9) does not admit a positive solution for gi(w̄i), then gi(wi) = 0 ∀wi. In this case,
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the auxiliary function ŵi(G−i) can be set at w̄i. Second, if gi(w̄i) > 0, then strict normality implies that,

starting at w̄i and progressively reducing wi, (9) defines gi(wi) as a function of G−i while gi(wi) remains

positive. If in the course of this procedure gi(wi) becomes zero, we can set gi(wi) = 0 for any wi ≤ ŵi(G−i),

where ŵi(G−i) solves

Qi(ŵi(G−i)) = G−i. (11)

If in the course of this procedure gi(wi) never becomes zero, then we can set ŵi(G−i) to any arbitrary

value strictly less than wi. We label the contribution function thus defined as bi(wi, G−i), so that we obtain

player i’s expected contribution:

Gi =

∫ w̄i

ŵi(G−i)

bi(wi, G−i) dFi(wi). (12)

The following proposition, with proof in the Appendix, contains our main uniqueness result.11

Proposition 3 (Existence and uniqueness). Suppose the ui have the form in (8) and Assumptions A1–A3

are satisfied. Then there exists a unique equilibrium.

We now turn attention to comparative statics. First, we show how agents’ expected contributions re-

spond to an exogenous contribution, ∆, by another party. Given this exogenous contribution, let g∗i (wi,∆)

denote player i’s equilibrium contribution when i’s income realization is wi. Similarly, let G∗i (∆) be i’s ex-

pected equilibrium contribution in the n-player game, and let G∗(∆) denote the associated total expected

contributions of the n players. Finally, note that the income level of player i that must be exceeded for

equilibrium contributions to be strictly positive is ŵi(G
∗(∆)−G∗i (∆) + ∆). Lemma 1 below establishes that

in response to an increase in exogenous contributions, all agents reduce their expected contributions, but

not sufficiently to reduce the total expected provision. Moreover, the reduction in contributions occurs not

just in expectation, but for each income level, both at the extensive and intensive margins.

Lemma 1. If G∗i (∆) > 0, then −1 <
dG∗

i (∆)
d∆ < 0 and −1 < dG∗(∆)

d∆ < 0. Moreover,
dŵi(G

∗(∆)−G∗
i (∆)+∆)

d∆ > 0

if ŵi(G
∗(∆)−G∗i (∆) + ∆) ∈ (wi, w̄i), and

∂g∗i (wi,∆)
∂∆ ≤ 0, with strict inequality for all wi where g∗i > 0.

Second, we determine the concavity or convexity of the contribution function: implicitly differentiating

(9) twice yields

g′′i (1 +Q′i) = Q′′i (1− g′i)2, (13)

11Proposition 3 substantially generalizes the results of Barbieri and Malueg (2010) since the functions bi do not need to be
piecewise-linear in wi or G−i, as arise in Barbieri and Malueg (2010). All examples in Gradstein et al. (1994) are piecewise
linear in wi and G−i.
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so we see that the signs of g′′i and Q′′i are the same.12

Consider now distributions F1, F2, ..., Fn for players’ values and denote the unique expected equilibrium

contributions as G∗1, G
∗
2, ..., G

∗
n. Next take the distributions F̂1, F2, ..., Fn and let the expected equilibrium

contributions in this case be Ĝ∗1, Ĝ
∗
2, ..., Ĝ

∗
n. For ease of exposition, assume that in both equilibria player 1

contributes for all income levels and assume that both G∗−1 and Ĝ∗−1 are strictly positive. The following

proposition derives effects of changing player 1’s income distribution.

Proposition 4 (Stochastic dominance). Fix the distributions F2, ..., Fn. Consider two distributions for

agent 1’s values, F1 and F̂1. Assume that in both equilibria player 1 contributes for all income levels and

assume that both G∗−1 and Ĝ∗−1 are strictly positive.

a. Suppose F1 strictly first-order stochastically dominates F̂1. Then Ĝ∗1 < G∗1, Ĝ∗−1 > G∗−1, and Ĝ∗ < G∗.

b. Suppose F̂1 strictly second-order stochastically dominates F1 and Q1 is strictly convex. Then Ĝ∗1 < G∗1,

Ĝ∗−1 > G∗−1, and Ĝ∗ < G∗.

c. Suppose F̂1 strictly second-order stochastically dominates F1 and Q1 is strictly concave. Then Ĝ∗1 > G∗1,

Ĝ∗−1 < G∗−1, and Ĝ∗ > G∗.

Proof. Lemma 1 allows a reaction-function analysis of equilibrium contributions, even when the number of

players is larger than 2. We separate out player 1 from the aggregate of all other players, and represent

expected contributions on a Cartesian plane. Using (9) we define the following (expected-contribution)

reaction function for player 1,

G1 = R1(G−1 |F1) ≡
∫ w̄1

ŵ1(G−1)

b1(w1, G−1) dF1(w1), (14)

for given G−1, where b1 was defined following (11). Observe that the function R1 is continuous and strictly

decreasing with slope less than 1 in absolute value. Similarly, we can consider the game played by all players

other than player 1 as defining an aggregate reaction function for all other players, given some exogenously

fixed level for G1. The sum of all solutions G2, ..., Gn then can be written as R−1(G1) and, in equilibrium

G∗−1 = R−1(G∗1). By Lemma 1, with G1 assuming the role of ∆, we also see R−1 is strictly decreasing, with

slope less than 1 in absolute value.

Part a. Let R1(G−1 |F1) and R1(G−1 | F̂1) be defined as above. To establish part a, observe by (14)

and Proposition 2, because b1 is increasing in w1, changing player 1’s distribution from F1 to F̂1 shifts

12The example of Section 5.1 suggests that there is no easily interpretable condition on ui that determines whether Qi is
concave or convex. As an empirical matter, the procedure and difficulties involved in determining the curvature of gi(wi) are
discussed by McClelland and Brooks (2004), for instance. And since the signs of g′′i and Q′′i are the same, the curvature of Qi
can be determined empirically, in principle.
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player 1’s reaction function leftward, as shown in Figure 1. Therefore, the equilibrium values of the expected

contributions (G1, G−1) for the profile (F̂1, F2, ..., Fn) will be on the function R−1, to the northwest of the

equilibrium expected contributions for the profile (F1, F2, ..., Fn) (the key feature of the reaction functions

is that their slopes lie between −1 and 0). This reasoning establishes Ĝ∗1 < G∗1 and Ĝ∗−1 > G∗−1 in part a,

and it is illustrated in Figure 1. The fact that Ĝ∗ < G∗ follows because, by Lemma 1, the slope of R−1 lies

in (−1, 0), again as illustrated in Figure 1, so (Ĝ∗1, Ĝ
∗
−1) lies below the line with slope −1 through the point

(G∗1, G
∗
−1).

line with slope −1

R1(G−1 |F1)

R1(G−1 | F̂1)

•

•(G
∗
1, G

∗
−1)

(Ĝ∗1, Ĝ
∗
−1)

R−1

G−1

0 G1

Figure 1: F1 FOSD F̂1 or F̂1 SOSD F1, assuming Q1 is convex

Part b. It is enough to note that, if Q1 is strictly convex, then b1 is strictly convex in w1. Since b1 is

the integrand in equation (14), the fact that F̂1 strictly second-order stochastically dominates F1 a leftward

shift to R1 as in part a. Therefore, the same conclusion results.

Part c. If Q1 is strictly concave, then bi is strictly concave. Changing player 1’s distribution of income

from F1 to F̂1 shifts R1 rightward, and the result follows from reversing the previous reasoning.

Of course, as usual, Proposition 4 applies with weak inequalities if the convexity of Q is not strict or

if the dominance shifts are only weak. Moreover, if player 1 does not contribute for all income levels, all

assumptions of the proposition must be adapted so that they apply to the range of income levels for which

g∗1 > 0 in the original distribution, leaving everything else unchanged. Informally, when one player’s income

distribution shifts to the right, his expected contribution increases; this is partially offset by other players
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reducing their contributions, but overall the effect is that expected contributions increase. For a player

with a convex contribution strategy, a reduction in the riskiness of his income distribution will reduce his

expected contribution; this is partially offset by other players increasing their contributions, but overall the

effect is that expected contributions decrease. The effect is reversed for a player whose contribution strategy

is concave in the region where it is strictly positive; if this player is sure to contribute at all possible incomes,

then reducing the riskiness of his income distribution leads him to increase his contributions, with total

contributions also increasing. A neutrality result is found when the contribution strategy is linear where it

is positive: if such a player contributes at all possible income levels, then a reduction in the riskiness of his

income distribution has no effect on his expected contribution.

It must be pointed out that the results in Proposition 4 about expected contributions do not simply

obtain because of the averaging of a, say, concave contribution function that remains unchanged. On the

contrary, the following Corollary demonstrates that the same patterns of changes obtain for the equilibrium

contribution functions g∗i (wi) and ĝ∗i (wi), for each income realization wi. For clarity of exposition, we think

of G∗i as describing the initial situation and of Ĝ∗i as describing the final equilibrium. We state the Corollary

and conduct the proof only for the changes described in part c of Proposition 4 to align the direction of

changes with the previous description; however, all other cases follow similarly.

Corollary 1. Under the assumptions of part c of Proposition 4, ĝ∗1(w1) > g∗1(w1)∀w1. Moreover, for i =

2, ..., n, G∗i ≥ Ĝ∗i ; and G∗i > Ĝ∗i =⇒ g∗i (wi) > ĝ∗i (wi) for all wi levels such that g∗i (wi) > 0.

Proof. Since Ĝ∗−1 < G∗−1, it follows by (9) that ĝ∗1(w1) > g∗1(w1) for all w1, in addition to Ĝ∗1 > G∗1 as

already determined in Proposition 4. Consider now players 2, . . . , n and apply Lemma 1 with the expected

contribution of agent 1 taking the place of ∆. Immediately, we obtain that G∗i ≥ Ĝ∗i , ∀i > 1. To conclude

the proof, let G∗i > Ĝ∗i for some i > 1 and consider any wi such that g∗i (wi) > 0. We have

g∗i (wi)− ĝ∗i (wi) =

∫ G∗
1

Ĝ∗
1

∂gi(wi,∆)

∂∆
d∆

= −
∫ Ĝ∗

1

G∗
1

∂gi(wi,∆)

∂∆
d∆

> 0,

where the strict inequality follows by Lemma 1. To see this, note that ∂gi(wi,∆)
∂∆ < 0 over an interval that

takes strictly positive probability, i.e., for ∆ sufficiently close to G∗1. Moreover, if as ∆ increases from G∗1

to Ĝ∗1 the contribution for some income level becomes zero, that income-level contribution remains zero for

larger values of ∆ as well, because of the properties of ŵ established in Lemma 1.
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The results in Proposition 4 have an interesting parallel with those in Theorem 5 in BBV. In particular,

part (iii) of BBV’s Theorem 5 states that “Equalizing wealth redistributions will never increase the voluntary

equilibrium supply of the public good,” and we find that if Q1 is convex, for example, then reducing the

riskiness of player 1’s income distribution does not increase the expected supply of the public good. And

part (iv) of BBV’s Theorem 5 states that “Equalizing wealth redistributions among current non-contributors

or among current contributors will leave the equilibrium supply unchanged.” In our setting, we find, even for

a player who contributes at all possible income levels, reducing the riskiness of a player’s income distribution

may increase or decrease his expected contribution (and so, too, the overall expected level of the public

good) according to whether his contribution strategy is concave or convex.

Applying Proposition 4 to players one at a time, we obtain the following corollary.

Corollary 2. If all player’s contribution strategies are convex, then reducing the riskiness of each player’s

distribution of income reduces the overall expected level of the public good. If all players’ contribution strate-

gies are concave and for all relevant income levels each player contributes to the public good, then reducing

the riskiness of each player’s distribution of income increases the overall expected level of the public good.

In the literature on taxation, it is common to assume income to be stochastic (see, e.g., Kanbur, 1981), a

feature accounted for by our framework. In the political-economy literature on inequality, a standard way to

model inequality-reducing income redistribution is via a combination of proportional taxation and lump-sum

redistribution (see, e.g., Persson and Tabellini, 1994). In our model, such a scheme would accomplish two

changes. First, a lump-sum redistribution of income across agents occurs, from the rich on average to those

that are in expectation poor. This across-agent change is well-handled by simply extending the results of

BBV at the realized income level.13 Second, a “riskiness-reducing” redistribution among the possible income

realizations of the same agent is effected.14 Here, Proposition 4 and Corollaries 1 and 2 apply, so that interim

and expected contributions change as described above, in a way that goes beyond what a simple extension

of BBV’s results may suggest.

We conclude this section with an analysis of crowding-out, analyzing the effects of taxation and govern-

ment provision on voluntary provision of a public good. Here we favor clarity and simplicity over realism by

assuming taxes are lump-sum and can be paid by each individual for all possible income realizations. The

government then uses these tax revenues to contribute an equal amount to the public good. Our modeling

assumptions are implemented through the following timing:

13The procedure and results are completely analogous to the upcoming Proposition 5.
14The risk-reducing effects of taxation have been formally analyzed at least since Domar and Musgrave (1944). The extensive

literature stemming from this seminal paper deals with portfolio or occupational choice, for instance. However, the risk-reducing
effects of taxation on the voluntary provision of public goods à la BBV have not been studied. (There is a large literature on
the tax-price of deductible charitable contributions; this is not at all the issue here.)
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1. The government announces a lump-sum taxation scheme (t1, . . . , tn), where ti is the tax levied on

agent i, and contributes
∑
tj to the public good;

2. Each agent receives his income realization and pays taxes accordingly;

3. Each agent, simultaneously and independently, voluntarily contributes to the public good; and

4. The total public good provision is the sum of the government’s contribution and the agents’ contribu-

tions.

We now obtain the following counterpart of Theorem 6 in BBV.

Proposition 5 (Crowding out). Suppose that starting from an initial position where consumers supply a

public good voluntarily, the government supplies some amount ∆ of the public good, which it pays for through

lump-sum taxes.

1. If the taxes are collected from agents that never contribute to the public good, then expected voluntary

contributions decrease, but by less than ∆. Therefore, the equilibrium total supply of the public good

increases.

2. If the taxes are collected from agents that contribute to the public good, then expected voluntary con-

tributions decrease. The decrease is less than ∆ if for some contributor ŵi > wi in the after-tax

equilibrium. The decrease in total contributions is exactly ∆ if for all contributors ŵi ≤ wi in the

after-tax equilibrium. In this last case, the equilibrium total supply of the public good stays the same.

While we leave the proof to the Appendix, it is important to remark here that taxes must be lump-sum,

i.e., independent of the actual realization of wi. Otherwise, one needs to take into account the distribu-

tional consequences of taxation. Indeed, in the next section we present an example that shows that, when

equilibrium strategies are strictly convex and taxation is proportional, crowding-out may be more than

one-for-one.

5 Examples, extensions, and implications

In this section, we provide a simple family of examples for which the contribution strategies can be convex or

concave where they are strictly positive. The examples highlight how the techniques we have developed allow

us to extend the conclusions of Barbieri and Malueg (2010) for both applications and theoretical insights.

Suppose there are two players, 1 and 2, with utility functions as in (8), with the additional assumptions that
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vi ≡ 0, Hi(x) = xb, and Ki(x) = xa, with a ∈ (0, 1] and b ∈ [0, 1]. Then preferences satisfy the assumptions

of Proposition 2. We have

Qi(x) =
Ki(x)−H ′i(x)

K ′(x)
=
x− bxb−a

a

and

Q′′i (x) = − (a− b)b(1 + a− b)xb−a−2

a
.

Therefore, where it is positive, the equilibrium strategy will be concave if a > b and convex if a < b.

5.1 Comparative statics, taxation, government provision, and crowding-out

Here we suppose there are symmetric players and only three possible income levels, wL = 1, wM = 1.5, and

wH = 2. The associated probabilities are symmetric about the expected income of 1.5: Pr(wi = wM ) = pM

and Pr(wi = wL) = Pr(wi = wH) = (1−pM )/2. Thus, reductions in pM yield riskier distributions of income.

For simplicity, the examples are such that players contribute at all possible income levels.

Table 1: Voluntary contributions, without and with taxation to finance government provision

a = 3
4 , b = 1

4

(g is concave)

a = b = 1
2

(g is linear)

a = 1
4 , b = 3

4

(g is convex)

pM = 1 Gi = 0.5 Gi = 0.5 Gi = 0.5

pM = 1
3 Gi = 0.499026 Gi = 0.5 Gi = 0.501148

pM = 0 Gi = 0.498538 Gi = 0.5 Gi = 0.501721

pM = 1
3 , τ = 0.1

1.5 , l = 0.1 Gi = 0.499154 Gi = 0.5 Gi = 0.500998

pM = 1
3 , t = 0.1 Gi + t = 0.499026 Gi + t = 0.5 Gi + t = 0.501148

pM = 1
3 , τ = 0.1

1.5 Gi + t = 0.499154 Gi + t = 0.5 Gi + t = 0.500998

In the base case with no taxation, the symmetric equilibrium can be found as the solution to the following

system:

gL = Q(wL − gL)−
(
pLgL + pMgM + pHgH

)
gM = Q(wM − gM )−

(
pLgL + pMgM + pHgH

)
gH = Q(wH − gH)−

(
pLgL + pMgM + pHgH

)
.

Table 1 reports individual expected contributions as pM ranges from 1 to 1/3 (the uniform distribution) to 0.

The results accord with Proposition 4: when g is concave (a = 3/4 and b = 1/4), this increase in riskiness

of income reduces contributions from 0.5 to 0.498538; when g is piecewise linear (a = 1/2 and b = 1/2), this
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increase in riskiness of income leaves contributions unchanged at 0.5; and when when g is convex (a = 1/4

and b = 3/4), this increase in riskiness of income increases contributions from 0.5 to 0.501721. The first

three rows of Table 1 illustrate the interpretation of Proposition 4 in which the riskiness of each agent’s

income distribution changes. As described after Corollary 2, what is frequently interpreted in the literature

as inequality-reducing redistribution—proportional taxation with lump-sum redistribution—is also handled

by Proposition 4. The fourth line of Table 1 illustrates this last interpretation. The proportional tax rate

is set at τ = 0.1
1.5 , so that the lump-sum transfer, l, to each player equals 0.1. The government makes

up any realized shortfall and retains any realized surplus. For simplicity, we assume the government can

see individuals’ incomes (so there is no issue with individuals honestly reporting their incomes) and the

government finances whatever realized shortfall from the expected contribution and retains any surpluses.

These assumptions mean that i) there are no concerns with individuals honestly reporting incomes for tax

purposes and ii) individuals can perfectly forecast the government’s contribution to the public good.15 The

conclusions agree with Proposition 4. In Barbieri and Malueg (2010), only the no-effect scenario illustrated

in the middle column arises.

We next analyze the effects of taxation and government provision on voluntary provision of a public good.

Continuing with the earlier example, we examine the uniform case (pM = 1/3). If the tax is lump sum and

equal to 0.1, then for the utility functions represented in Table 1, both players continue to contribute at all

income levels. Therefore, there is one-for-one crowding out, and the overall level of the public good remains

unchanged, relative to the case of no government intervention.

Suppose instead the government contributes the same exogenous level of the public good, namely, 0.2,

this time financing it through proportional taxation at the rate τ = 0.1
1.5 , so that the expected tax revenue

is the same as for the lump sum taxation. Interestingly, now we see the intervention does have an effect.

When g is concave, the crowding out is less than one-for-one, with an overall increase in the expected level

of the public good. When g is linear, the crowding out is one-for-one, leaving the expected level of the

public good unchanged. And when g is convex, the crowding out is more than one-for-one, with an overall

decrease in the expected level of the public good. These results obtain because one can decompose the

government intervention described above into two components: first, a public provision of the public good

financed through a lump-sum tax set equal to the tax rate times expected income; and second, a reduction in

the riskiness of the income distribution because taxes are not actually lump-sum, but proportional. The first

component has no real effect on total provision, for the parameter values in the example, by Proposition 5.

15Of course, inducing truthful revelation of incomes for taxation purposes has long been of interest. A classic reference on this
topic is Mirrlees (1971). Also, if the government’s contribution were to depend on realized tax receipts, then players knowing
their own income realizations but no others might hold different forecasts regarding the government’s contribution. As noted
above, for simplicity here we avoid such complications.
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But the second component has the real effects on total provision described in Corollary 2. This explains

why the results in the fourth row and sixth row of Table 1 match. In Barbieri and Malueg (2010), only the

no-effect scenario illustrated in the middle column is considered.

5.2 Multidimensional private information

Our methodology can easily accommodate multidimensional private information. Beyond income, another

interesting parameter of the basic pure public good model is the “unit cost” of contributions, which, in a

full-information context, is analyzed in Cornes and Hartley (2007a). The possibility that agents may have

different unit costs of contributions is captured by changing the budget constraint to

xi + cigi = wi,

where ci is the unit cost.

We now assume ci is private information, and, for simplicity only, we assume it is uniformly distributed

on [1− d, 1 + d], where d is a non-negative number smaller than 1. Running through the same calculations

in Sections 3 and 4, we can rewrite the FOC in (9) as

Qi(wi − cigi(wi, ci))− gi(wi, ci) = G−i,

and this equation defines gi(wi, ci) as a function of G−i when gi(wi, ci) is positive, i.e., for wi > ŵi(G−i).

(Note that, as in (11), the definition of the threshold value ŵi(G−i) is not affected by the realized level of ci.)

We can denote this function by bi(wi, ci, G−i), and we have that expected contributions satisfy the following:

Gi =

∫ 1+d

1−d

∫ w̄

ŵi(G−i)

1

2d
bi(wi, ci, G−i) dFi(wi) dci.

Cornes and Hartley (2007a) analyze changes in the level of the unit costs. We can address the issue of changes

in the dispersion of unit costs simply by changing d. Indeed, if we take d1 > d2, we see that the distribution

of costs characterized by d2 second-order stochastically dominates the distribution of costs characterized by

d1. Therefore, under convexity, i.e., if

∫ w̄

ŵi(G−i)

∂2bi(wi, ci, G−i)

(∂ci)2
dFi(wi) > 0,

then equilibrium expected contributions under d1 are larger than those under d2 (and vice versa if the

above displayed term is negative). This result is illustrated in the following example, which continues with
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the example of this section, now taking parameters a = 1/2 and b = 0, which yields Qi(x) =
[
Ki(x) −

H ′i(x)
]
/K ′i(x) = 2x. And if we assume F1(w) = F2(w) = w on [0, 1], then equilibrium is characterized by

G1 =

∫ 1+d

1−d

∫ 1

G2

1

2d

w1 −G2

1 + c1
dF1(w1) dc1,

and by a similar equation for G2.

Noting that the integrand is convex in c1, we expect an increase in d to lead to larger equilibrium

contributions. Indeed, this is confirmed by numerical calculations that G1 = G2 ≈ 0.1716 when d → 0,

G1 = G2 ≈ 0.1722 when d = 0.25, and G1 = G2 ≈ 0.1742 when d = 0.50.

6 Conclusion

We have studied the connections between two frameworks used to analyze the private provision of a public

good in the presence of private information: the binary public-good model with threshold uncertainty and

the standard continuous case à la BBV. What makes the framework of the binary public good with threshold

uncertainty tractable is the linearity of first-order conditions in others’ contributions. We have shown that

such linearity also considerably simplifies the analysis in the standard continuous case.

After identifying all utility functions that yield this linearity, we provided conditions ensuring the utility

functions have the same properties that BBV require: the private good and the public good are both strictly

desirable and strictly normal, and preferences are convex. Given these properties of derived demands, we

established existence and uniqueness of equilibrium. Finally, we explored the issue of convexity of equilibrium

strategies in income, which is private information. The curvature properties of equilibrium strategies are

central to our analysis of crowding out and changes in a player’s income distribution. Our analysis of how

changes in a player’s ex ante distribution of income affect individual and overall expected contributions to

the public good complement BBV’s analysis of redistribution of income among players.

The implications we draw when income is stochastic and strategies are convex align with those that

BBV derive for full-information economies, but appear stronger. First, a proportional taxation with lump-

sum redistribution (of the average proceeds) reduces public good provision, even if income is taxed and

redistributed across contributors only. Second, crowding out of public expenditures financed through a

proportional tax on contributors’ income will be more than one-for-one. Both results obtain because a

proportional tax reduces the riskiness of the income distribution of any agent. If the income of the first

agent, who adopts a convex contribution strategy, becomes less risky, then all other agents perceive this

agent’s contribution as lower and they partially compensate. In turn, the first agent actually reduces his
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contributions for each of his income realizations. And if income becomes symmetrically less risky for all,

then all agents end up contributing less.

In contrast, when agents’ contribution strategies are concave, our implications go in the opposite direction;

indeed, we show by example that an inequality-reducing income redistribution may increase the voluntary

supply of the public good, if the riskiness of individual income distributions is reduced.

Our results are useful for analyzing the effects of income inequality and public provision on the voluntary

provision of public goods. If income is at least partially stochastic and its taxation is not lump sum, then

taxation affects the riskiness of income distributions, with the effects we have described. If one assumes, as in

BBV, that what motivates agents to give is “enlightened self-interest,” then our model establishes a baseline

set of implications valid when income is stochastic that cannot simply be gleaned from the full-information

framework of BBV.

Our analysis provides a first look into the standard continuous case, through the tools developed for the

analysis of binary public-good environments with threshold uncertainty. However, much work remains to be

done to extend our results. In particular, dispensing with linearity of best responses in others’ contributions

is the subject of current work.16

Appendix

Proof of Proposition 1. Equation (4) is a linear partial differential equation of first order; Hildebrand (1976,

p. 389) provides the general solution to this canonical form. Adapting his notation to ours, this solution is

specified as follows:

w2 = vi(w1),

where vi is an arbitrary function, w1(xi, G̃, ui) = c1 and w2(xi, G̃, ui) = c2 are solutions of any two indepen-

dent ordinary differential equations which imply the relationship

dx

1
=
dG̃

−1
=

dui

hi(xi) + ki(xi)× G̃
,

and c1 and c2 are arbitrary constants.

We now follow the procedure in Hildebrand’s Example 1 on p. 393. Integration of dxi = −dG̃, yields

w1(xi, G̃, ui) ≡ xi + G̃ = c1.

16A simulation in the Appendix provides a step in this direction, analyzing a Cobb-Douglas framework. Our numerical results
on the effects of changing the riskiness of income are in accord with our analytical comparative statics.
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Integration of dxi = dui/(hi(xi) + ki(xi)× G̃), using G̃ = c1 − xi, yields

∫ xi

0

[
hi(s)− ki(s)s+ ki(s)c1

]
ds = ui + c2;

substituting back for c1 we have

w2(xi, G̃, ui) ≡
∫ xi

0

[
hi(s)− ki(s)s+ ki(s)

(
xi + G̃

)]
ds− ui = c2.

Using w2 = vi(w1) we obtain

∫ xi

0

[
hi(s)− ki(s)s+ ki(s)(xi + G̃)

]
ds− ui = vi(xi + G̃);

hence,

ui(xi, G̃) =

∫ xi

0

[
hi(s) + ki(s)(xi + G̃− s)

]
ds+ vi(xi + G̃),

which is (5).

Proof of Proposition 2. To demonstrate property i, note that, given (6) and vi ≡ 0, we have

∂ui
∂xi

= H ′i(xi) +K ′i(xi)× G̃

and

∂ui

∂G̃
= Ki(xi).

Therefore, because of condition 1, we have ∂ui

∂G̃
> 0 if xi > 0. Moreover, if xi > 0 and G̃ > 0, then condition 2

yields ∂ui

∂xi
> 0, so we have proved property i.

We now turn to the sufficiency of FOC (7). Note that

d2E
[
ui(wi − gi(wi), gi(wi) +

∑
j 6=i gj(wj))

∣∣∣ wi ]
(dgi(wi))2

= H ′′i (wi − gi(wi))− 2K ′i(wi − gi(wi))

+K ′′i (wi − gi(wi))× (G−i + gi(wi)) < 0,

by conditions 2 and 3. (Below, we omit functional arguments whenever no confusion arises.)

We now verify strict normality of the private good and of the individual contribution to the public good.

In symbols, the desired normality obtains when 0 < dgi
dwi

< 1. Implicitly differentiating (7) and solving for
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g′i, we obtain:

g′i =
K ′i − (H ′′i +K ′′i × (gi +G−i))

2K ′i − (H ′′i +K ′′i × (gi +G−i))
, (15)

and both numerator and denominator are positive by conditions 2 and 3, so 0 < g′i < 1 as desired.

Finally, for strict quasiconcavity of ui it is sufficient that

D ≡

∣∣∣∣∣∣∣∣∣∣
0 ∂ui

∂xi

∂ui

∂G̃

∂ui

∂xi

∂2ui

(∂xi)2
∂2ui

(∂xi)(∂G̃)

∂ui

∂G̃

∂2ui

(∂xi)(∂G̃)

∂2ui

(∂G̃)2

∣∣∣∣∣∣∣∣∣∣
> 0. (16)

We have

D =

∣∣∣∣∣∣∣∣∣∣
0 H ′i +K ′iG̃ Ki

H ′i +K ′iG̃ H ′′i +K ′′i G̃ K ′i

Ki K ′i 0

∣∣∣∣∣∣∣∣∣∣
= 2KiK

′
i(H

′
i +K ′iG̃)−K2

i (H ′′i +K ′′i G̃), (17)

which, for any xi > 0 and G̃ > 0, is strictly positive by conditions 1, 2, and 3.

Proof of Proposition 3. The proof follows the methodology of Cornes and Hartley (2007a, 2007b). We begin

by rewriting (12) as

Zi(Gi, G) ≡ Gi −
∫ w̄i

ŵi(G−Gi)

bi(wi, G−Gi) dFi(wi) = 0. (18)

Identity (18) implicitly defines Gi as a function of G. We now show that there exists a unique G consistent

with equilibrium, by demonstrating that

∂Gi
∂G
≤ 0 ∀i, (19)

with strict inequality if Gi > 0. To understand how uniqueness follows from (19), suppose by contradiction

that two levels of total expected donations are consistent with equilibrium, G′ and G′′, say, with G′′ > G′.

This implies that, for at least some i, Gi(G
′′) > Gi(G

′). But this is impossible under (19).

We now proceed to prove (19). By the implicit function theorem, we have

∂Gi
∂G

= −
∂Zi

∂G
∂Zi

∂Gi

.

Using (18), we obtain

∂Zi
∂G

= −
∫ w̄i

ŵi(G−Gi)

∂bi(wi, G−Gi)
∂G−i

dFi(wi),
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since b(ŵi(G−Gi), G−Gi) = 0. Rewriting (9), which defines bi where it is strictly positive, as

Qi(wi − bi(wi, G−i))− bi(wi, G−i) = G−i, (20)

we obtain by implicit differentiation that

∂bi
∂G−i

[−Q′i(wi − bi(wi, G−i))− 1] = 1;

and because Q′i > 0 wherever bi > 0, it now follows that

−1 <
∂bi
∂G−i

≤ 0, (21)

with strict inequality whenever bi > 0. Therefore,

∂Zi
∂G
≥ 0.

Similarly,

∂Zi
∂Gi

= 1 +

∫ w̄i

ŵi(G−Gi)

∂bi(wi, G−Gi)
∂G−i

dFi(wi),

and, using (21), we have

∂Zi
∂Gi

> 0.

Thus,

∂Gi
∂G

= −
∂Zi

∂G
∂Zi

∂Gi

≤ 0,

with strict inequality for Gi > 0, which is (19).

Note now that uniqueness of G, through (18) and the above determined ∂Zi

∂Gi
≥ 0, implies uniqueness

of Gi. In turn, this implies uniqueness of G−i and eventually, through (9), we obtain uniqueness for every

contribution function gi(wi).

All that is left to show is existence of an equilibrium. By the previous discussion, what is required is a

value for G such that
∑
iGi = G. Note that each Gi is defined as a continuous function of G through (18).

Thus,
∑
iGi is also a continuous function of G. Now, using (11), define GHi through

Qi(w̄i) = GHi > 0,

and note that Zi(0, G
H
i ) = 0, since ŵi(G

H
i ) = w̄. Thus, GHi is the contribution by players other than i
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that just leaves player i unwilling to contribute even at his highest possible income level; so, Gi(G
H
i ) = 0.

Therefore, letting GH = maxiG
H
i , we have

∑
iGi(G

H) = 0 < GH . Consider now a player for whom

assumption A3 is satisfied. Without loss of generality, take that to be i = 1, consider w1 sufficiently close to

w̄1, and use (9) to define g1(w1) through

g1(w1) = Q1(w1 − g1(w1)). (22)

By assumptions A1–A3, (22) is satisfied for a unique g1(w1) > 0 if w1 is close to w̄1. To see this, note that

A3 implies that the demand of agent 1 for the public good when no one else contributes is strictly positive

for w1 is close to w̄1. Denote this level as ĝ1. By properties ii and iv in Assumption A1, ĝ1 uniquely solves

the FOC (7), which can be rearranged as

ĝ1 =
K1(w1 − ĝ1)−H ′1(w1 − ĝ1)

K ′1(w1 − ĝ1)
.

But since

Q1(y) =
K1(y)−H ′1(y)

K ′1(y)
,

then g1(w1) = ĝ1 is the unique solution to (22), again for w1 sufficiently close to w̄1.

For those values of w1 such that (22) does not admit a positive solution, take g1(w1) = 0. Here g1(w1) is

player 1’s contribution when all others contribute 0. Now, let GL =
∫ w̄1

w1
g1(w1) dF1(w1). By construction,

using (18) we have Z1(GL, GL) = 0. Therefore, G1(GL) = GL and a fortiori
∑
iGi(G

L) ≥ GL. By continuity

therefore, there exists some G ∈ [GL, GH ] such that
∑
iGi(G) = G, as we wanted to show.

Proof of Lemma 1. Suppose ∆ is such that G∗i (∆) > 0. Let G∗−i(∆) ≡
∑
j 6=iG

∗
j (∆) denote the equilibrium

contributions of all other players. With this exogenous contribution, the defining equation for player i’s

equilibrium strategy, g∗i (wi,∆), becomes

g∗i (wi,∆) = Qi(wi − g∗i (wi,∆))−G∗−i(∆)−∆ (23)

(this is just the obvious extension of (9)). The proof proceeds in several steps.

Step 1: ∂g∗i (wi,∆)/∂∆ has a common sign for all wi where g∗i > 0. Differentiating (23) with respect to

∆ we find, for any income level wi where g∗i (wi,∆) > 0, that

∂g∗i (wi,∆)

∂∆

[
1 +Q′i(wi − g∗i (wi,∆))

]
= −1−

dG∗−i(∆)

d∆
. (24)
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In (24) the term in square brackets is exceeds 1 (because Q′i > 0), so ∂g∗i /∂∆ has the same sign at all incomes

where g∗i is positive (and elsewhere it is 0).

Step 2: dG∗(∆)/d∆ ∈ (−1, 0). Rearrange (24) and take expectations with respect to wi to obtain

−1 =
dG∗i (∆)

d∆
+ E

[
∂g∗i (wi,∆))

∂∆
Q′i(wi − g∗i (wi,∆))

]
+
dG∗−i(∆)

d∆

=
dG∗(∆)

d∆
+ Ti(∆), (25)

where

Ti(∆) ≡ E

[
∂g∗i (wi,∆)

∂∆
Q′i(wi − g∗i (wi,∆))

]
.

First, suppose, contrary to the claim of the step, that dG∗(∆)/d∆ ≥ 0. Then by (25) it must be that

Ti ≤ −1 for all i for all players making positive contributions. Because Q′i > 0, it then follows from Step 1

that ∂g∗i /∂∆ ≤ 0 for all wi, with strict inequality whenever g∗i > 0, in turn implying dG∗i / d∆ < 0, for all

players making positive contributions. But this in turn implies dG∗/d∆ < 0, contradicting the assumption

that dG∗(∆)/d∆ ≥ 0.

Second, suppose, contrary to the claim of the step, that dG∗(∆)/d∆ ≤ −1. Then by (25) it must be that

Ti ≥ 0 for all i for all players making positive contributions. Because Q′i > 0, it then follows from Step 1

that ∂g∗i /∂∆ ≥ 0 for all wi, with strict inequality whenever g∗i > 0, in turn implying dG∗i / d∆ ≥ 0 for all

players making positive contributions. But this in turn implies dG∗/d∆ ≥ 0, contradicting the assumption

that dG∗(∆)/d∆ ≤ −1.

Step 3: dG∗i (∆)/d∆ < 0. By (25) and Step 2 it follows that Ti(∆) < 0. Therefore, because Q′i > 0, it

follows from Step 1 and the definition of Ti that ∂g∗i (wi,∆)/∂∆ ≤ 0, with strict inequality wherever g∗i is

positive. This in turn implies dG∗i /d∆ < 0.

Step 4: −1 < dG∗i (∆)/d∆ < 0. This follows from Steps 2 and 3.

Step 5: ∂g∗i (wi,∆)/∂∆ ≤ 0, with strict inequality for all wi where g∗i > 0. This follows from Steps 1

and 4.

Step 6:
dŵi(G

∗(∆)−G∗
i (∆)+∆)

d∆ > 0. Follows by (11), Q′i > 0, and the fact that d
d∆ [G∗(∆)−G∗i (∆) + ∆] >

0, as established in Steps 3 and 4.

Proof of Proposition 5. Part 1 is a direct corollary of Lemma 1. Because only the noncontributors are taxed,

the resulting contribution by the government is essentially viewed by the contributors as the exogenous

contribution ∆ in the lemma.
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To prove part 2, we again start from equation (18), recalling that whenever Gi(G) is strictly positive it

satisfies

Zi(Gi(G), G) ≡ Gi −
∫ w̄i

ŵi(G−Gi)

bi(wi, G−Gi) dFi(wi) = 0,

where the function bi(wi, GO) comes from equation (9) as the solution for g, when g is positive, of

Qi(wi − g)− g = GO.

After applying the lump-sum tax ti, the new solution, gt, satisfies

Qi(wi − ti − gt)− gt = GO, (26)

implying

gt = bi(wi − ti, GO). (27)

As with the derivation above of the expected contribution functions Gi(G), we denote the new, after-tax

individual expected contribution as Gti(G). Therefore, from (27) we have that Gti, viewed as a function of

total expected contributions, is

Gti =

∫ w̄i

ŵi(G−Gt
i)+ti

bi(wi − ti, G−Gti) dFi(wi). (28)

We now establish two useful relations. Subtracting ti from both sides of (26), we have, for ti ≤ GO,

Qi(wi − (ti + gt))− (gt + ti) = GO − ti, (29)

implying

ti + gt = bi(wi, GO − ti). (30)

From (27) and (30) we now obtain a first useful condition:

bi(wi − ti, GO) + ti = bi(wi, GO − ti). (31)

Second, observe as well that, if Gti + ti ≤ G, then

ŵi(G− (Gti + ti)) ≤ ŵi(G−Gti) < ŵi(G−Gti) + ti, (32)
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where the first inequality follows from the definition of ŵi in (11) and ŵ′i(·) > 0, which derives from Q′i > 0,

in turn implied by the strict normality in Assumption A1 recalling the conclusions of Proposition 2.

We now investigate the value Zi(G
t
i + ti, G). Plugging Gti + ti into the first argument of the definition of

Zi we have

Zi(G
t
i + ti, G) = (Gti + ti)−

∫ w̄i

ŵi(G−(Gt
i+ti))

bi(wi, G− (Gti + ti)) dFi(wi) (by (18))

= ti −
∫ w̄i

ŵi(G−(Gt
i+ti))

bi(wi, G− (Gti + ti)) dFi(wi)

+

∫ w̄i

ŵi(G−Gt
i)+ti

bi(wi − ti, G−Gti) dFi(wi)
(by (28))

= tiFi(ŵi(G−Gti) + ti)

−
∫ ŵi(G−Gt

i)+ti

ŵi(G−(Gt
i+ti))

bi(wi, G− (Gti + ti)) dFi(wi)

(by (31) and (32))

= tiFi(ŵi(G− (Gti + ti)))

+

∫ ŵi(G−Gt
i)+ti

ŵi(G−(Gt
i+ti))

[
ti − bi(wi, G− (Gti + ti))

]
dFi(wi).

(33)

Observe now that

bi(ŵi(G−Gti) + ti, G− (Gti + ti)) = bi(ŵi(G−Gti), G−Gti) + ti (by (31))

= ti; (by the definition of ŵi(G−Gti))

therefore, the integrand in square brackets in (33) is strictly positive, because bi is strictly increasing in wi

on (ŵi(G− (Gti + ti)), ŵi(G−Gti) + ti).

There are now two cases to consider. First, if with the imposition of the tax all types of player i continue to

contribute, i.e., ŵi(G−Gti)+ti ≤ wi, then the expression in (33) equals 0 by (32), implying 0 = Zi(G
t
i+ti, G)

which, by the interpretation of equation (18) given at the beginning of this proof, yields Gi(G) = Gti + ti,

or, equivalently, Gti = Gi(G) − ti. Thus, for those values of G and Gti such that ŵi(G − Gti) + ti < wi, G
t
i

viewed as a function of G shifts down by exactly ti after the tax is imposed.

In the second case, some types of player i do not contribute after the tax is imposed, i.e., ŵi(G−Gti)+ti >

wi. In this case, (33) is strictly positive, again by (32). Therefore, Zi(G
t
i + ti, G) > 0, and because

∂Zi(Gi, G)/∂Gi > 0, it now follows that Gti + ti > Gi(G), which yields Gti > Gi(G) − ti. That is, the

function Gti shifts down by less than ti.
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∑
iG

t
i(G)

∑
iGi(G)

∑
iGi(G)−∆

G

G−∆

0 ∆ G∗ Ga G
∗ + ∆

G

Figure 2: After taxation (t1, . . . , tn),
∑
iG

t
i(G) lies on or above

∑
iGi(G)−∆.

Figure 2 is helpful in understanding the equilibrium effect of taxation followed by government contribu-

tion. Observe that taxation effects a reduction in incomes, so by normality Gti(G) ≤ Gi(G). Therefore, the

foregoing analysis shows that the graph of the sum of after-tax (expected) contribution strategies Gti(G) lies

below the curve labelled
∑
iGi(G) and on or above the curve labelled

∑
iGi(G)−∆. Moreover, the (total)

equilibrium provision Gt following the introduction of taxes satisfies Gt =
∑
iG

t
i(G

t) + ∆, or, equivalently,∑
iG

t
i(G

t) = Gt −∆.

Now, if
∑
ti = ∆ and after taxation all contributors remain contributors for all possible incomes, then∑

iG
t
i(G) is simply a downward shift of

∑
iGi(G) by the amount

∑
ti = ∆; we have

∑
iG

t
i(G
∗) =∑

i

(
Gi(G

∗) − ti
)

= G∗ − ∆. Hence, the equilibrium overall supply of the public good, which solves

G − ∆ =
∑
iG

t
i(G), is unchanged. However, if with taxation some player at some income levels does

not contribute, then
∑
iG

t
i(G
∗) shifts down by less than ∆, implying the post-tax equilibrium Gt will fall

in the interval (G∗, Ga], showing the equilibrium crowding out is only partial. The case of partial crowding

out is depicted in Figure 2.

A Cobb-Douglas example. Here, we provide a robustness test of our results about redistribution by con-

sidering a prominent example of utility function for which our linearity condition in (4) does not apply.

Nonetheless, we will show that our results on changing inequality in the distribution are confirmed by our

numerical simulations.

Consider a two-player BBV game with private information. The utility function of agent i, i = 1, 2 is
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ui(xi, G̃) = xαi G̃
β , with budget constraint wi = xi + g̃i, and G̃ = g̃1 + g̃2. While we consider α > 0 and

β > 0, we here do not require that β = 1 as done previously. There is private information about income

levels, with w1 distributed according to cdf F1 and w2 distributed according to F2. Equilibrium consists of

a pair of contribution functions g1(w1) and g2(w2).

Substituting the budget constraint into the utility function, type w1 of agent 1 maximizes for the real

number g̃1 the following utility:

∫
(w1 − g̃1)

α
(g̃1 + g2 (w2))

β
dF2(w2); (34)

the FOC is ∫
r1 (g̃1, g2 (w2) , w1) dF2 ≤ 0, (35)

with equality if g̃1 > 0, and where r1 (g̃1, g2 (w2) , w1) ≡
(
β
αw1 − α+β

α g̃1 − g2 (w2)
)

(g̃1 + g2 (w2))
β−1

.

In our simulations below, we consider a common, symmetric distribution of income for agents 1 and 2.

In particular, we suppose there are only three possible income levels, wL = 1, wM = 1.5, and wH = 2.

The associated probabilities are symmetric about the expected income of 1.5: Pr(wi = wM ) = pM and

Pr(wi = wL) = Pr(wi = wH) = (1 − pM )/2. Thus, reductions in pM yield riskier distributions of income.

For simplicity, the examples are such that players contribute at all possible income levels. Therefore, the

numbers below are derived using (35) with equality.17

Table 2 reports individual expected contributions as pM ranges from 0.9 to 0.5 to 0.1. The results accord

with Proposition 4: when g is concave (α = 3/4 and β = 1/2), this increase in riskiness of income increases

contributions from 0.3760 to 0.3842; and when when g is convex (α = 5/4 and β = 2), this increase in

riskiness of income reduces contributions from 0.6647 to 0.6465.
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